Onglets disponibles :

1	Þ			₿	:		$\mathbf{\tilde{\mathbf{X}}}$	š	-	22	• <u> </u> •	D -	CHOIX -	Unité du vivant 🔍 OK
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1: choisir une collection

2:observer

3: comparer

4 : construire une matrice de caractères

5 : afficher le tableau de référence de la collection choisie

6 : polariser et coder les états de caractères de la matrice

(l'option est désactivée tant que la matrice de caractères n'est pas réalisée)

7 : classer dans des groupes emboités (l'option peut être désactivée dans les collections de type « lycée »)

8 : établir des parentés (l'option est désactivée tant que la matrice de caractères n'est pas réalisée)

9 : lancer l'étude moléculaire

10 : imprimer la fenêtre, l'arbre, le tableau ou l'image

11 : copier la fenêtre, l'arbre, le tableau ou l'image

12 : enregistrer un tableau de caractères, un fichier de groupement emboîté, un fichier d'arbre ou l'étude moléculaire
13 : ouvrir un tableau de caractères, un fichier de groupement emboîté, un fichier d'arbre, l'étude moléculaire ou un fichier d'exercice

14 : options (choix possibles activés lors de la construction d'un arbre)

15: choisir une sous-collection

Menus disponibles :

Remarque : une fiche technique du logiciel est disponible via le logiciel !

<u>Exemple de démarche simple : l'étude de données anatomiques et la construction d'arbre phylogénétique</u>

- Ouvrez la collection « Unité du vivant Lycée » comme indiqué ci-dessous :

Utilisez les fonctionnalités du logiciel pour compléter le tableau ci-dessous – vérifiez le tableau pour poursuivre :

	ADN	Cellules	Chromosomes en bâtonnets	Enveloppe nucléaire	Organites cellulaires	Système nerveux	Système nerveux dorsal	Vertèbres
Arabidopsis								
Ble								
Bactérie								
Drosophile								
Poisson rouge								
Gorille								
Homme								
Grenouille								
Poulet								
Saccharomyces								
Souris								

Utilisez les fonctionnalités du logiciel pour polariser les états de caractères ou faire des groupes :

Si la commande « polariser » est disponible (selon les activités), elle permet de déterminer les états primitifs et dérivés : il faut d'abord choisir l'animal de référence (« extragroupe ») ne présentant aucun état dérivé parmi les caractères choisis (étape 1) puis cliquer sur « colorer les états primitifs suivant l'extragroupe ». Enfin, il faut sélectionner et colorer tous les états dérivés (utiliser la commande « colorer de la même manière les états identiques) ; il peut y avoir plusieurs états dérivés pour un même caractère (choisir différentes couleurs). Terminez en vérifiant le codage.

1 - Trouver et coder les états primitifs	2 - Coder les états dérivés en colorant les ce	Codage	
Choisir un taxon extragroupe Colorer les états primitifs suivant l'extragroupe	Couleurs a utiliser pour les cellules cliquées couleur du texte Cliquer sur la cellule ou sur le texte ci-dessus pour choisir les couleurs	Style de remplissage plein	Vérifier Tout annuler
	Colorer de la même manière les états identiques	 Annuler l'édition 	des caractères

Si la commande « classer » est disponible (selon les activités), elle permet de constituer des groupes emboîtés en fonction des caractères choisis et d'obtenir automatiquement un arbre phylogénétique.

caractère présent		Système nerveux ventral	Duplication de l'ADN		Chromosomes en bâtonnets	Système nerveux	Vertèbres
			ADN		Organites cellulaires		
<u>_</u> → Organiser ↓ Ie tableau					Reproduction sexuée		
Afficher	Arabidopsis		Présentes	Présente	Présente	Absente	Absent
Afficher les	Ble	Absente	Présentes	Présente	Présente	Absente	Absent
Documents	Bombyx	Présente	Présentes	Absente	Présente	Présente	Absent
Afficher Toutes	Chou	Absente	Présentes	Présente	Présente	Absente	Absent
RAZ effacer les hoites	Bactérie	Absente	Présentes	Absente	Absente	Absente	Absent
Vérifier	Drosophile	Présente	Présentes	Absente	Présente	Présente	Absent
	Poisson rouge	Absente	Présentes	Absente	Présente	Présente	Présent
	Gorille	Absente	Présentes	Absente	Présente	Présente	Présent
Afficher l'arbre	Grenouille	Absente	Présentes	Absente	Présente	Présente	Présent

Vous pouvez maintenant construire un arbre phylogénétique.

- Exemple de démarche simple : l'étude de données moléculaires et le calcul de distance génétique
 - Ouvrez la collection « Vertébrés-Lycée » comme indiqué ci-dessous :

- Ouvrez le fichier de molécules « myoglobine.aln » et complétez la matrice de distance génétique :

	Carpe	Dauphin	Chimpanze	Homme	Chien	Ornithorynque	Manchot	Requin
Carpe								
Dauphin								
Chimpanze								
Homme								
Chien								
Ornithorynque								
Manchot								
Requin								

La distance correspond au nombre d'acides aminés différents entre les protéines comparées.

Lorsqu'on étudie une matrice de distance génétique, il faut comprendre que des rapprochements doivent être faits de manière logique et avec suffisamment de recul par rapport aux valeurs : 78 et 71 acides aminés de différents pourront être considérés comme des valeurs similaires (différence de 9 % entre ces valeurs) alors que 8 acides aminés différents par rapport à un seul acide aminé différent devront être considérés comme des valeurs éloignées (87,5 % de différence entre ces valeurs).

Exemple :

Ce type d'arbre est appelé arbre UPGMA (Unweighted Pair Group Method with Arithmetic Mean)

Utilisez les fonctionnalités du logiciel pour obtenir l'arbre UPGMA avec les distances génétiques affichées :

• Selon les activités, on peut dater les fossiles et la position des ancêtres communs lors de la réalisation d'arbres

<u>ئ</u> ر	Andreolepis											■ Aigle
ĮĽ												➡ Anguille
												 Amphioxus
-450	-400	-350	-300		250		-200	-15	0 -100	-50	ar	→ Temps (Ma) stuel
0 Silurier	Dévonien	Carbonifère		Permien		Trias		Jurassique	Crétacé	Paléog	ène N	
Paléozoïque								Mésozoïqu	ie	Cér	nozoïque	