ÉNERGIE LUMINEUSE REÇUE EN FONCTION DE LA DISTANCE PAR RAPPORT À LA SOURCE DE LUMIÈRE

Problème : Quelle est la relation entre l'énergie reçue par une planète et sa distance au soleil, source de lumière sphérique ?

Matériel disponible :

- Un ordinateur équipé d'une interface **ExAO** (Expérimentation Assistée par Ordinateur).
- Le logiciel généraliste d'acquisition Orphi GTI et le logiciel de traitement Regressi.
- Un banc optique et un curseur mobile surmonté d'une tige métallique.
- Une sonde lumineuse (luxmètre) servant de capteur.
- Une source de lumière (boîtier photoagiréacteur) sur un support ajustable.

- Placez la sonde lumineuse face à la source lumineuse. Fixez la sonde lumineuse sur la tige métallique à l'aide de la pince, le capteur bien dirigé vers la lumière. On considèrera que la distance 0 est située au bord du boîtier lumineux.
- Placez la sonde exactement au repère 5 cm du banc optique, la fenêtre à la hauteur du faisceau. Connectez la sonde à l'interface ExAO sur la prise C. Allumez l'interface et lancez le logiciel Orphy GTI.
- Paramétrage du logiciel Orphy GTI :
 - \geq Sélectionnez la première source (premier cadre en couleur à droite en bas de l'écran avec des valeurs).
 - Choisissez le capteur « luxmètre » puis la prise EA7. Sélectionnez \pm 500 mV. \geq
 - Étalonnez le capteur : 0 V pour 0 lux et 5 V pour 12500 lux. \geq
 - \triangleright Activez la fenêtre. Choisissez les autres sources éventuelles et désactivez-les.
 - \geq Appelez le professeur pour vérifier les étapes suivantes :
 - Cliquez dans la fenêtre « mode ». Effectuez une mesure « entrée clavier » ; \geq abscisse « clavier » puis OK.
 - \geq Précisez nom : « d » et unité : « cm ». Sélectionnez le minimum (0 cm) et le maximum (150 cm).
- Positionnez la sonde à la distance voulue, entrez cette distance dans la case en haut à droite : « d= » puis validez avec la touche « entrée ».

Distance à la source	5	8	9,3	12,9	19,6	25	30	35	40	45	50	55	67,2	80	100	123,2
en cm																
Valeur de																
l'éclairement																
en lux																
													Jupiter			Saturne
Distance réelle	Mercure		Vénus	Terre	Mars											
des planètes																
en 10° km	58		108	150	228											
													780			1430

Entrez les valeurs obtenues dans le tableau suivant au fur et à mesure.

- Exportez l'acquisition sous Regressi (🕮 : 1ère icône à gauche de l'icône « TP ») puis OK.
- Dans la fenêtre « graphe », cliquez sur l'onglet du curseur et choisissez « gomme » pour éventuellement supprimer les points, au début de la mesure, où la sonde était saturée ou pour supprimer les points aberrants.

Mode Clavier GI

ORPHY

- Effectuez un clic droit sur la courbe puis cliquez sur « coordonnées », cochez « ligne » puis remplacez « segments » par « lissage ».
- Imprimez votre courbe en cochant la case graphe. Donnez-lui un titre.
- Cliquez sur « modélisation » (¹/₂).
- Entrez l'équation suivante (la lettre ϕ s'obtient en cliquant simultanément sur Ctrl, \hat{u} , F) :

(d)=a+k/(d^2)

- Validez en cliquant sur le bouton clignotant.
- Votre tracé expérimental reste en arrière-plan sous la forme des points de mesure et la courbe mathématique nouvellement tracée apparaît en trait plein.